Robust Bayesian estimation of autoregressive - moving
نویسندگان
چکیده
A Bayesian approach is presented for modeling a time series by an autoregressive-moving average model. The treatment is robust to innovation and additive outliers and identiies such outliers. It enforces stationarity on the autoregressive parameters and invertibility on the moving average parameters, and takes account of uncertainty about the correct model by averaging the parameter estimates and forecasts of future observations over the set of permissible models. Posterior moments and densities of unknown parameters and observations are obtained by Markov chain Monte Carlo in O(n) operations, where n is the sample size. The methodology is illustrated by applying it to a data set previously analyzed by Martin, Samarov and Vandaele (1983), and to a simulated example.
منابع مشابه
Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s
In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملRobust Estimation of Nonstationary, Fractionally Integrated, Autoregressive, Stochastic Volatility
Empirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance—but still mean reverting—behavior is commonly found with nonparametric estimates of the fractional differencing parameter d, for financial volatility. In this paper, a fully parametric Bayesian estimator, rob...
متن کاملIntegration of Seasonal Autoregressive Integrated Moving Average and Bayesian Methods to Predict Production Throughput under Random Variables
Analysing and modelling efforts on production throughput are getting more complex due to random variables in today’s dynamic production systems. The objective of this study is to take multiple random variables of production into account when aiming for production throughput with higher accuracy of prediction. In the dynamic manufacturing environment, production lines have to cope with changes i...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995